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I. INTRODUCTION 

The luminosity of a collider is limited by the beam-beam interactions. When the 
beam current is small, the beam-beam tune shift or perturbed beam-beam parameter 
increases steadily with the current and as does the luminosity. However, when the 
beam current is big enough, several things will happen. One bunch may increase in 
size while the other will not. This situation, known as flip-flop, requires a bifurcation 
solution for explanation. This will lower the perturbed beam-beam parameter and 
therefore the luminosity. Direct flip-flop had been observed in SPEAR by Paterson 
and Donald.’ A drop in the beam-beam tune shift had been recorded in PETRA by 
Piwinski (Fig. l).’ Of course, the drop in beam-beam tune shift need not be a result 
of the flip-flop phenomenon. Both bunches may also blow up in size but will remain 
stable. The luminosity will undoubtedly be lowered. Finally, one or both bunches 
may blow up indefinitely and will be lost eventually. 

We study beam-beam collision for two gaussian bunches having circular trans- 
verse cross sections. We follow the mapping method proposed by Hirata,3 who stud- 
ied a flat beam with a nonlinear beam-beam kick. However, here the beam-beam 
kick is assumed to be linear.4 Of course, this assumption is not physical especially for 
particles near the edge of a bunch. However, this model has three points of merit. 
First, the particle distribution remains gaussian after each collision. Second, this 
model is symplectic when radiation damping is neglected? Third, this model can 
be solved analytically up to a certain extent. For this reason, we deem this model 
worthy of investigation. 

In our results, there is stable period-one fixed-point bifurcation only when the 
residual tune v is between 0.25 and 0.5 or between 0.75 and 1. However, for tune 
values between 0 and 0.25 or between 0.5 and 0.75, there is no bifurcation, but 
the period-one fixed point splits up into period-three fixed point as the beam-beam 
parameter increases. However, this can also serve as an explanation of Piwinski’s 
observation’ of a sudden decrease in luminosity. In contrast, Hirata’s results3 exhibit 
bifurcation for all tune values. 

The model is reviewed in Section II and the period-one fixed point solution is 
solved analytically in Section III. In Section IV, the stability of the solution is studied 
analytically using the stability matrix. In Section V, numerical tracking is used to 
study higher-period fixed points. 

II. THE MODEL 

We follow closely the model in Ref. 3 and the notations therein. Consider the 
motion of a particle in a bunch in the vertical direction y. Since the transverse cross 
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section of the bunch is assumed circular, motion in the horizontal direction z can be 
treated identically if beta-sychrotron coupling is neglected. 

Denote the canonical variables in terms of nominal Twiss parameters by Y1 
= y/fi and Yz = (cy, + 13,y’)fi. Here, p, and oiy are Twiss parameters and 
y’ denotes the angle the particle’s path makes with the ideal orbit. We are inter- 
ested only in the statistical quantities such as the averages of the moments E;k; 
denoted by iiij = (XI;). For the partner bunch, these quantities carry an asterisk 
as a superscript. 

The motion of the particle can be described by successive operations: 

B (beam-beam force) 

(2) = (-&, Y) (2) ’ 
R (radiation) 

(;)=(; ;)(;)+m%(:), 
0 (betatron oscillation) 

where p = 2nv is the phase advanced from one interaction point to the next, X 
zr exp(-2/To) is the damping ratio with 2’0 the damping time in units of propagation 
time between two interaction points, E = ey is the nominal vertical emittance, r^ is a 
gaussian noise with unit standard deviation, K = 4x77, and the nominal beam-beam 
parameter is defined as 

Nr, 
‘7 = 27ryc, (24 

In the above, N is the number of particles in each bunch, rP is the classical elec- 
tromagnetic particle radius, y is the relativistic Lorentz factor, and Note that for a 
round beam E& = e,p,, where & is the nominal beta function at the interaction 
point. Here, the effects of radiation and diffusion have been treated locally as a 
lumped sum at the interaction point. 

In this model, the statistical moments A;j transform according to Eq. (2.1) as 
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B: A:* = A11 , 
&A,* 

A;, = AZ2 - - , 2KA12 A;, = AZ2 - - 
K2A11 - 

4, Ai, + A;: ’ 

R: A:1 = &I , A:2 = X&z , Ak2 = XzAzz + (1 - X’+ , (2.3) 

0: A’=L?AU. 

Note that det A is invariant for operations B and 0. This is also true for the operation 
R if radiation damping is neglected (X = 1); then the whole transformation B -+ R 
+ 0 will be symplectic. This is also evident in Eq. (2.1). 

III. PERIOD-ONE FIXED POINT 

The period-one fixed point is defined as the solution that is invariant after the 
passage from one interaction point to the next. If it is stable, this is what we observe. 

The period-one fixed point (just before B) can be solved easily. Let t = cot p, 

and the ratio of bunch sizes R = All/h;,. The period-one fixed point is 

An(R)=$( (&fz) + [(;-~~)2+~2]“‘) > 

h(R) = F > 

h(R) = E + 2 , 
and 

A:,(R) = Aij(R-‘) (3.2) 
It is interesting to note that the solution depends on t only which is very nearly equal 
to 4~7~ and is not sensitive to X at all, although in deriving the solution we definitely 
require X # 1. The above solution is obtained by setting the changes of det A, Tr A, 
and Al1 to zero for the series of operations B + R + 0, and then determining the 
sign of A,, by solving another equation (since det A cannot fix the sign of A12). The 
ratio between the bunch sizes can then be obtained by solving the self-consistent 
equation, 

R = An(R) 

iZ;,o’ 
(3.3) 



Obviously, if R is a solution so is l/R also. It is easy to see that R = 0, 1, 03 are 
solutions. However, when tb < t < t,, where 

t =z+dF@ 
b 

1 + 9 
and t, = 2(” + rn) ) 

there exists another solution 

R=b-+m, 
b = P(1 + 2zZ) - 2 

4 + 4tz - tz . (3.5) 

Starting from t = tb where b = 1, R bifurcates into two branches which approach c-a 
and 0 as t + t,. When t > t,, there is no more bifurcation and the only solution is 
that of the R = 1. These are all the period-one fixed point solutions of the problem. 
They are displayed in Fig. 2. We want to point out that there is no finite t, in 
Hirata’s results.3 In other words, the bifurcation continues as the beam parameter 
increases. 

It appears that we have obtained a bifurcation solution in a simple analytic form. 
Unfortunately, the stability analysis and numerical tracking of Sections IV and V 
show that the bifurcation solution is stable only when z < 0 or when the residual 
tune satisfies 0.25 < v < 0.5 or 0.75 < Y < 1.0. Even in these regions, the beam- 
beam parameter range of the bifurcation from tb to t, is extremely narrow. For the 
other regions of the residual tune, the only stable solution is R = 1 when t is small, 
and instability sets in well before the bifurcation point tb. However, Hirata3 obtains 
stable bifurcation for all values of v. 

By numerical tracking, we mean starting from a set of Aij and A:, that deviates 
from a solution by a small amount and apply the B -+ R -+ 0 operations many 
times numerically. hij and A:, should converge to the solution values after many 
turns if the solution is stable, otherwise it is unstable. 

In passing, we want to show the positions of the solutions in the complex R-plane. 
At t = 0, we have solutions at 0, 1, co, and (1 f @)/2; the last two are of course 
unphysical. As t increases, the two complex solutions move along the unit circle and 
reach R = 1 when t = tb. Two of these three solutions at R = 1 then move along 
the real R-axis reaching zero and infinity at t = t, giving the bifurcation solution. 
The third one remains at R = 1 (see Fig. 3). 

IV. THE STABILITY MATRIX 

If we consider Al,, A,,, Azz, A;,, A;,, AG2 as a column matrix, the B -+ R + 0 
operation implies the transformation 

A’ (I( M(A*) 0 
A*, = 0 M(A) 



5 

where the remaining term denotes the diffusion of the R operation. In Eq. (4.1), 

A=( ;i), A*=( ;,) ’ 
and the 3 x 3 matrix M(A*) can be written explicitly as 

( 

M(A*) = 

\ 

2Xnsc X2K2S2 c2--+- 2XZn.? 
- - 

41 Ait 
2Xx 

4, 
x2.? 

XK(2 - 3”) - 
A;, xzsc 

2Xnsc X2K2C2 
2+- - 

2X2KC2 

Ail + A;: 
-2Xx - ~ 

Ai1 
x22 

(4.2) 

\ 

1 (4.3) 

/ 

with s = sinp and c = cos p. If Aij and Azj deviate from a period-one fixed point by 
an infinitesimal amount Ahij and AAzj, the corresponding changes in Aij and AZ; 
are given by 

(4.4) 

where 

&?.(A, A*)ij = C ‘zE*)” AkjS~l , 
k 11 

(4.5) 

with the indices running over 1, 2, 3 denoting (ll), (12), (22) respectively. Explicitly, 

&?(A, A*) = 

2XmcAII 2X2n2szA2 

Ait - (l+X)A;; a a 

I 
hc(c2 - s2)All 2Xzn2scA2 - 

Ai: (l+x)A;; a a 

2XnscAll 2X2&?A2 - 
Ait - (1 + X)A;; a a 

\ 

(4.6) 

) 

Both the four 3 x 3 matrices in Eq. (4.4) are evaluated at the fixed-point values. To 
test the stability of the fixed point, what we need is to compute the six eigenvalues of 
the 6 x 6 matrix and see whether they have magnitudes less than unity. We show in 
the Appendix that the eigenvalue z can be obtained by solving the following indicial 



equation, 

det M(A*)det M(A) - det N(h, A*)det N(A*, A) = 0 , (4.7) 

where the 3 x 3 matrices M(A*) and M(A) are the same as M(A*) and M(A) in 
Eq. (4.2) except that --z is added onto each diagonal element. The 3 x 3 matrices 
N(A,A*) and N(A*,A) are the same as M(A*) and M(A) except that their first 
columns are replaced by the first columns of M(A, A’) and M(A*, A) respectively. 

Let us first study the situation of R = 1, since this can give us information of 
the stability of the bifurcation solution. With R = 1, we have 

M = M(A*) = M(A) , 

N = N(A, A*) = N(A*, A) , (4.3) 

and Eq. (4.7) splits up into 

detM+detN=O, (4.9) 

d&M-detN=O, (4.10) 

where actually Eq. (4.9) corresponds to the situation AA, = Ail:, and Eq. (4.10) 
corresponds to the situation AA,j = -AAzj. These are cubic equations and can 
therefore be solved in the closed form. However, since the matrix elements are not 
sensitive to damping, it is a good idea to set X + 1 and obtain a much simplified 
solution. Now the system is stable when each of the three roots of Eqs. (4.9) and 
(4.10) lie on a unit circle. Therefore, for each equation, we expect one root to be unity 
and stay fixed while the other two are complex when we have stability but becoming 
real when stability is lost. In fact, this turns out to be the actual situation. Thus 
each cubic reduces to a quadratic equation only. 

We want to list M and N in the simplified form 

( 

(c - as)2 - z 2s(c - as) 2 

M= - (c - as)(s + ac) -2s(s + o!c) + 1 -I SC ) 

(s + ac)’ -2c(s + m) 2 - 32 

os(2c - 01s) 2s(c - as) 2 

N = a(cz-2) -a2sc -2s(s +a~)+ 1 -z SC 

L 

, (4.11) 

- oc( 2s + ac) -2c(s + ac) 2 - 5 ! 

where o/ = t/Ail since t = K in the limit X + 1. 
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For AAij = AA:,, Eq. 4.9 gives 

5 = 1, 1 - a f +(2 - a) (4.12) 

with a = ~(2s + oc). The parameter t is related to o/ by 

t= 
401 

4+4&L-CYs ’ 
(4.13) 

which is a monotonic increasing function of LY, except at two points 01 = 2zf2m 
where t diverges. Therefore, the value of 01 cannot exceed 22. + 2m physically. 
The condition for stability is 

{ 

o<(Y<22 z>o 

o<(Y<22+2m t<O. 
(4.14) 

Together with Eq. (4.13), these limits can be rewritten as 

I 
22 o<t<- 

1 + z* 
z>o or O<Y<$ 

(4.15) 

0<t<CS z<o or +<v<;, 

where v is the residual tune. 
For AAij = -AA:,, Eq. (4.10) gives 

x=1,1-a+l+Y& (4.16) 

where u’ = 2s’ + 3cusc - 01~s~. Stability requires 

1 o~a~~+;dsxi z<o. 
(4.17) 

They imply o<t< 42 

4 + 322 
r>O or o<v<: 

O<t<Z+d=S 

(4.18) 

- - 
1 + 2s 

r<O or :<Y<;. 
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Comparing Eqs. (4.14) and (4.17) or (4.15) and (4.18), it is evident that the limits 
for AAij = -AAzj are more stringent than those for AAij = AAi;. Thus, in general 
the period-one fixed point will become unstable at the upper limits of Eq. (4.18). 

We denote the stability limit for R = 1 (and also X = 1) by t,. Comparing ts of 
Eq. (4.18) with the onset of the bifurcation solution tb of Eq. (3.4), we get 

tb > ts z>O or O<Y<~, (4.19) 

tb < t, < t, z<O or i<v<$, (4.20) 

Equation (4.19) says that, for 0 < v < 0.25, the R = 1 solution becomes unstable 
at t = t, which is before the onset of the bifurcation solution. This implies that the 
bifurcation solution would be unstable. On the other hand, when 0.25 < Y < 0.5, the 
R = 1 solution is still stable after passing the point of bifurcation. This implies that 
the bifurcation solution would probably be stable also up to the end point t,. These 
assertions can be verified by studying the eigenvalues of the stability matrix (4.3) for 
the situation when R # 1. But we have to face a sixth-order indicial equation which 
can be reduced at most to a quartic equation if we put X = 1. Analytic solution is 
theoretically possible. However, the complexity of the resulting expressions would 
prevent us from drawing any conclusion. 

An easier way is to resort to numerical solution. Our assertion is indeed correct 
when damping is neglected (X = l), i.e., the bifurcation solution is unstable for 
0 < Y < 0.25 but becomes stable when 0.25 < v < 0.5. This is still true when 
damping is introduced. However the R = 1 solution for 0.25 < v < 0.5 becomes 
unstable when t reaches t,, the onset of bifurcation. This implies that there is at 
most one stable solution for each t. In this range of V, when t is small we have the 
R = 1 solution and it starts to bifurcate at t = tb. When t > t, there is no more 
stable solution. On the other hand, for 0 < v < 0.25, there is only the R = 1 solution 
which becomes unstable when t > t,. The above results are summarized in Fig. 4. 

V. NUMERICAL TRACKING 

So far we have studied only period-one fixed points. There are also period-two, 
period-three, and higher-period fixed points. Under some particular situations, these 
higher-period fixed points may be more stable than the period-one fixed points. That 
explains why we meet with points of instability. Analytical study of higher-period 
fixed points is very difficult because the mapping, as shown in Eq. (2.3), is nonlinear. 
For this reason, numerical tracking in the sense stated in Section III is performed 
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instead. Of course, numerical tracking can also help us to verify the stability or 
instability of the bifurcation solution. 

First, let us study the case where residual tune v = 0.15 and damping time 
Z’s = 142.9 or X = 0.9861. We find that the period-one fixed point is stable up 
to t = 0.525 exactly as given by Eq. (4.18). After that the solution converges to 
period-three fixed points instead as shown in Fig. 5. If t increases continuously and 
becomes sufficiently large, it is possible that the stable solution goes to something 
like period-seven fixed points, or we even have one beam divergent while the other 
stable but fluctuating. For this tune value, there is no stable bifurcation solution. 

We can define a perturbed beam-beam parameter 

6 = 2Eq ) 
AII + Ai, (5.1) 

so that the luminosity becomes L = Lot+/? where LO is the unperturbed luminosity. 

If the harmonic mean A:? of the three period-three fixed points A?;, defined as 

(5.2) 

is taken as Ali or A;, in Eq. (5.1), the plot of E against n in Fig. 6 shows a sudden 
decrease of [ or luminosity at t = 0.5205 or 7 = 0.0414. Here, the decrease is a 
discontinuity because the beam sizes change from the period-one fixed-point solution 
to the period-three fixed-point solution abruptly. The peak value of E is 0.059. This 
may serve as an explanation of Piwinski’s observation and the values of n and [ are 
also of the right order of magnitude. 

For the period-one fixed point, since A ir 0: t or n for large t, [ will be saturated for 
large 11 at e = [4n(-r+m)]-I. Th e saturation seen experimentally, however, is 
definitely not this saturation value because period-one fixed point becomes unstable 
at very early t when [ is still very small. 

It is worth pointing out that the final equilibrium solution depends on the history 
of the beam. If we increase t or the current slowly, the solution changes from period- 
one fixed point to period-three fixed points at t = 0.5205. However, if we let t 

decrease gradually now, the solution will stick to period-three fixed points even 
when t is less than 0.5205. The solution goes back to period-one fixed point only 
when t is sufficiently small. The reason for this peculiar behavior is that there is a 
region of stability for the period-one fixed point and also for the period-three fixed 
points although that region may be very small. Therefore the solution may converge 
to a certain fixed point if we are near enough to it unless there exists no stability 
region at all or that fixed point is completely unstable. 
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We do numerical tracking also for Y = 0.2 and Z’s = 142.9. Here, the limits for 
AAij = *AA:, are t = 0.3011 and 0.5878 respectively. If we keep AAij = AAIj, which 
is impossible to do experimentally, the period-one fixed point starts to “bifurcate” 
into period-two fixed points at t = 0.5878 and later into period-four fixed points as 
shown in Fig. 7. However, if we begin with AA, # AA:,, which is what we have 
in experimental operation, the stable period-one fixed point starts chaotic behavior 
after t = 0.3011 and continues so even after t = 0.5878 (Fig. 8). One possible reason 
may be that the period-three fixed points are too far away and their stability region 
is too small. When we compute the average beam size, we find that Air jumps from 
the period-one fixed point value of N 0.93 to a value ranging from N 1.8 to 2.8. This 
will certainly lower the perturbed beam-beam parameter 6, but the effect is not big. 

We next explore the situation when the residual tune is between 0.25 and 0.5 or 
between 0.75 and 1. We find that when tb < t < t,, the convergence to the stable 
bifurcation solution is extremely slow. This is expected as we recall that the R = 1 
solution is just stable when X + 1. Beyond t,, the R = 1 solution is not stable. 
But the divergence is extremely slow too because of the same reason. Here we do 
not encounter any higher-order fixed points. When t exceeds t,, the stability point 
for Ahij = -AAFj, numerical tracking shows a fast divergence of one beam without 
encountering any higher-order fixed point also. 

VI. CONCLUSION 

We have studied the beam-beam interaction using a simple round beam model 
with linear beam-beam kick. The results are interesting and are summarized in 
Fig. 4: 

(1) The region under the solid curve is completely stable. 

(2) When the residual tune v is between 0 and 0.25 (or 0.5 and 0.75), if the beam 
current is high enough so that t > t,, the bunch sizes may converge to period-three 
fixed points. The observation will be the blow up of both bunches. This can explain 
the drop in perturbed bean-beam tune shift or luminosity. It may also happen that 
the period-three fixed points are too far away from the period-one fixed point. The 
bunch sizes then fluctuate and become chaotic. The result may lead to a slight drop 
in luminosity and eventual instability. 

(3) When the residual tune v is between 0.25 and 0.5 (or 0.75 and l), as the beam 
current increases, the bunches may enter the stable bifurcation or flip-flop region if 
tb i t < t,. If t > t,, one or both bunches will blow up and become unstable. 
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APPENDIX 

We want to compute the determinant of a 6 x 6 matrix M which has the form 

M= 

WA*) 

bl 0 0 

bz 0 0 
b3 0 0 

al 0 0 
a2 0 0 
a3 0 0 

WA) 

(A.11 

where M(A*) and M(A) are 3 x 3 matrices. The determinant can be written as 

det M = det 

+ det 

f(A*) 0 

0 M(A) 

0 x x 

i 

+ det 

oxx 0 
0 x x 
bl 0 0 
bz 0 0 M(A) 
bs 0 0 

a1 0 0 
WA*) a2 0 0 

a3 0 0 
0 x x 

0 oxx 
0 x x 

I + det 

0 x x al 0 0 
0 x x a* 0 0 
0 x x a3 0 0 
bl 0 0 0 x x 
b,oooxx 
bs 0 0 0 x x 

AA.21 

where the lower-right-hand 3 x 3 matrix in the second term on the right side denotes 
M(A) with its first column replaced by zeroes, and the upper-left-hand 3 x 3 matrix 
in the third term denotes M(A*) with its first column replaced by zeroes. It can be 
shown easily that the second and third determinants on the right side vanish. The 
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last determinant can be rewritten as 

I 

a, x x \ 
a.j x x 0 

- det a3 ’ ’ 
N(A,A*) 0 

b, x x 
= -det > (A.3) 

0 bz x x 0 WA*, A) 

b3 x x 

where N(A’) and N(A) are the same as M(A*) and M(A) but with their first columns 
replaced by 

a1 
a2 
a3 

respectively. Therefore, we get 

1 and 

det M = det M(A*)det M(A) - det N(A,A*)det N(A*, A) 
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